
Rev. 2022/08/12 Pg. 1/3

 API&SDK INFO EN.docx

API & SDK information

API

For using the API, you need credentials. Please, contact to Omnitec to obtain your
credentials.

As you can see in the API web https://api.rentandpass.com/explorer all functions are
implemented, with the use and necessary parameters. You can test the function from this
web to see results. By now, only format "application/json" is implemented for results. The
rest are not implemented.

There you can get the necessary token after doing “Sign in” with your clientId,
clientSecret and one User and Password you must create. Find below steps:

1.- Creating one user:

https://api.rentandpass.com/explorer/#!/user/user_register

2.- Sign in with your user:

https://api.rentandpass.com/api/signin/token?clientId=7e9b8c39aa11ec9afd45e

cbe12d3eec8&clientSecret=abf1567fdb168c4edfb0f48fc4246c49&username=[**USUAR

IO**]&password=[**PASSWORD**]

And you receive a response similar to this:

{
 "access_token": "70dd7894ebc8999f52e842df7765e3c0",
 "refresh_token": "2ef7ecfad927dc2ecfadce36e1d2d853",
 "openid": 1211344576,
 "scope": "user,key,room",
 "expires_in": 3118226
}

This access_token is the one that must be sent to the application so that the user can
operate. Remember that the client_secret should NEVER be used outside of your server.
That is, it should never reach the user's application, because if the user accessed it in
some way, it would have access to all your locks.

3.- Now you can use the token with the clientId to, for example, list the locks of that user.

https://api.rentandpass.com/api/lock/list?clientId=7e9b8c39aa11ec9afd45ecbe

12d3eec8&token=70dd7894ebc8999f52e842df7765e3c0

Response:

{
 "list": [
 {

Rev. 2022/08/12 Pg. 2/3

 API&SDK INFO EN.docx

 "lockId": 1246554,
 "date": 1530345366340,
 "specialValue": 4337,
 "electricQuantity": 85,
 "lockAlias": "Lock",
 "keyboardPwdVersion": 4,
 "lockMac": "F3:BC:A0:17:48:0F",
 "lockName": "M301X_425234"
 }
],
 "pageNo": 1,
 "pageSize": 20,
 "pages": 1,
 "total": 1
}

SDKs

From the following link you can download all the information related to the SDK:

https://upkey.app/sdkfolder

Notes

Now our SDKs are restricted to the package name of each app. We need you to tell us
what package name you are going to use to give yourself access. If you don't have it yet
or want to do tests, you can use the package name "com.justfor.test".

When initializing a lock, the endpoint / lock / initialize must be called, sending the string
returned by the onLockInitialize callback as the data parameter, and to collect the ekeys,
the endpoint / key / list must be called with the sdkVersion = 3 parameter.

Quickstart guide

First of all, you need to create or register a new user, this is mandatory to initialize locks
or send eKeys: POST /user/register

All the users are the same, there is no difference in permissions. These permissions are
assigned through eKeys, those electronic keys may have admin privileges or just user
privileges. All the lock's management options are limited to users with an eKey with admin
privileges on that lock.

When a lock is initialized with an user, that user will receive an eKey with admin privileges
that can't be deleted until that lock is reset.

Admin user process to initialize locks:

1. GET /signin/token – Store the accessToken parameter for the consecutive
calls.

2. SDK --> startScanLock

Rev. 2022/08/12 Pg. 3/3

 API&SDK INFO EN.docx

3. SDK --> initLock

4. POST /lock/initialize

Process to send an eKey to another user:

1. GET /signin/token (OPTIONAL - Use this only if you haven't used it previously;
this request is done from the lock's owner.)

2. Create user for the eKey receiver if it is not an already existing User (see
/user/register)

3. PUT /key/send – keyRight specifies if the eKey has admin privileges.

Process to open a lock:

1. GET /signin/token (OPTIONAL - Only if it was not used previously; this request
is done from the User that wants to open the lock)

2. GET /key/list - sdkVersion = 3 – Stores the lockData parameter, this is
the required parameter for all the SDK requests.

3. SDK --> unlock

Before initializing the lock, please make sure the lock was not already initialized with
another app and therefore, it is under factory settings, ready to be initialized.

To make a list for the locks nearby (in BLE range) that are in factory settings (see
previous step), the request is:

device.isSettingMode(); //Android SDK

scanModel.isInited == NO //iOS SDK

This parameter will show if the device is ready to be initialized, apart from the previously
explained, the lock must be "awake", you can "awake" the lock just by using a card on the
device (even if it doesn't open) or by pushing a button on the device at that moment,
when you are scanning the lock with that SDK request.

Before making the initLock request, it is mandatory to specify the lock's firmware version.
The device object is picked from the ScanLock callback:

device.setManufacturerId(specialStr); // Android SDK

dict[@"clientPara"] = specialStr; //iOS SDK

specialStr = "XBY9E68A" //Rent&Pass type device

specialStr = "XBYMIYAVE" //Miyave type device

Any questions, we are at your disposal in soporte@omnitecsystems.com

